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Abstract—Traffic classification is an important concept in
network management, assisting with performance monitoring,
provisioning, capacity planning and maintaining security. It is
also challenging, especially with the dynamic nature of web
protocols, implementing encryption in new protocols such as
Google’s QUIC and older protocols such as HTTP/1 moving to
HTTP/2. We propose an efficient traffic classifier to deal with
these problems. As well, some past implementations of Machine
Learning classification have relied on the host server’s identity.
When the header fields for these extensions, such as Server Name
Indication (SNI) in the Transport Layer Security (TLS) extension
are removed, the classifier fails. In this project, we create a
decision tree classifier that is protocol agnostic. It differentiates
traffic into classes, such as browsing, chat, email, streaming, file
transfer, and VOIP. It also moves the classifier to the Software
defined networking (SDN) data plane, making use of features
such as packet inter-arrival time.

I. INTRODUCTION

Traffic monitoring is a necessary part of modern networks.
With increased encryption and the dynamic nature of web
protocols, this is not easy task. We propose a traffic classifier
that will take different encrypted traffic and the traffic class,
such as web browsing, VoIP, chat etc. Once we classify the
traffic, we then generate flow rules based on that classification.
Transferring the flow rules to a switch we are able to classify
network traffic using the SDN data plane.

II. BACKGROUND

Currently, the classification of network traffic is an impor-
tant topic in the Computer Science domain as many network
applications use it for monitoring network activity. By know-
ing what type of traffic is flowing in and out of a network, it
can predict traffic patterns to provide more effective network
capacities by categorizing it into 3 main categories: Sensitive
Traffic, traffic that needs to be delivered and on time, Best-
Effort Traffic, traffic that has a lower expectation for Quality
of Service (i.e. packet loss), and Undesired Traffic, which is
usually spam or malicious intent traffic.

With the increasing usage of network traffic such as Brows-
ing, Email, Chat, Streaming, File Transfer, VoIP and TraP2P,
classifying network traffic has now become critical. But, with
the use of encrypting traffic, traditional network classifying
techniques have now become ineffective for Internet Service
Providers (ISP) and Network Administrators. Without the ca-
pability of predicting traffic patterns, network systems cannot
provide optimal performances when distributing resources to
different types of traffic, as they all have different Quality of

Fig. 1. Simple decision tree example with two features and 3 classes

Service Requirements (i.e. Bandwidth, Packet Loss, Jitter, and
Delay) [1].

III. SYSTEM DESIGN

There are three control plane design areas to consider in
our traffic classification model: data on which to train the ML
model; training and testing the ML model; and converting the
results of the ML model to information readable by the data
plane. Below we outline these design areas as well as the
design of the data plane itself.

A. Data Design

The dataset we used is from University of New Brunswick’s
Canadian Institute for Cybersecurity, which has VPN and
non VPN datasets [2]. This dataset includes 14 traffic cate-
gories (VOIP, VPN-VOIP, P2P, VPN-P2P, Browsing, VPN-
Browsing, Email, VPN-Email, Chat, VPN-Chat, Streaming,
VPN-Streaming, File Transfer, and VPN-File Transfer). The
traffic was captured from Wireshark and tcpdump, which
used an external VPN service, that was then connected to
OpenVPN. The original files are saved in an Attribute-Relation



Fig. 2. Design of control plane from database to switch

File Format, which had 24 ‘columns’ of attributes in each
row. These attributes include: Duration, Total FIAT, Total
BIAT, min FIAT, Min BIAT, Max FIAT, Max BIAT, Mean
FIAT, Mean BIAT, FlowPacketsPerSecond, FlowBytesPerSec-
ond, Min FlowIAT, Max FlowIAT, Mean FlowIAT, Standard
FlowIAT, Min Active, Mean Active, Standard Active, Min
Idle, Mean Idle, Max Idle, Standard Idle, and Classification.
By using a Python script, we combined VPN and Non-VPN
data, and parsed the ‘columns’, and translated them into
separated Excel Sheets. A Jupyter Notebook File would grab
the features we chose and put them into the ML Model. For our
parsed data, we decided that an invalid value was a value of -
1, meaning that we would not include any rows that contained
a -1 in a column for our model. We decided on a main focus
of Inter Arrival Time (IAT) for our features, as it is proven
that IAT can increase classification accuracy substantially [3].
By using forward IAT (FIAT), backward IAT (BIAT), Flow
IAT (FlowIAT), and separating them into their min and max
values, we can create our thresholds for each classification.
Additionally, doing a histogram of min/max features available,
there were more valid values in Max FIAT, Max BIAT, Max
FlowIAT, and Min FIAT, Min BIAT, Min FlowIAT, compared
to Min Idle, Min Active and Max Idle, Max Active.

B. ML Model Design
For our machine learning model, we decided with ensemble

supervised learning models, specifically decision tree (Gini)
classifier. The reason of selecting Gini as a sub type was
because entropy decision tree classifiers use logarithms,
which makes the model performance slow [4]. We inserted
our cleaned compiled data set for model creation, but came
across an issue, the class distribution. In our dataset, the
class distribution was highly imbalanced. We had 0.63%
packets for Voice over Internet Protocol (VOIP) and 68.85%
of browsing packets as shown in Fig.3
With such inequality, we had an issue with our model being
overfitted with the browsing class variable. To resolve this,
we used SMOTE library in python to equalize all the datasets.
SMOTE oversampling technique created synthetic data points,
which are duplicates of the class variable which are low
in quantity and then adding them to the current dataset to
remove imbalance. After applying SMOTE oversampling, our
class distribution was equal as shown in below fig.4
Within decision tree classifier we started by initially selecting
four features namely, Max FIAT, Max BIAT, Max FlowIAT
and Max Idle and get accuracy results as shown below
in figure 5, as you can see there are some unbalancing in

Fig. 3. Class Distribution before applying SMOTE

Fig. 4. Class Distribution after applying SMOTE

the accuracy results as data varies and accuracy is around
76.77%.
To improve our overall accuracy as discussed above (applying
smote) and also increase the features to improve the accuracy,
we updated our features to Max FIAT, Max BIAT, Max
FlowIAT, Min FIAT, Min BIAT and Min FlowIAT. By
increasing the features and applying the smote give us the
accuracy result of around 94.5%. Our reasoning for choosing
these features is firstly because for the initial iteration (4
features), we used the least amount of features that could
give relatively good accuracy, and move forward from there.
Secondly, there is a trade-off between accuracy, and switch
resource utilization. The more features included, the more
power a switch needs to process them. Thirdly, once we were



Fig. 5. Model Accuracy before applying SMOTE

able to reach a target accuracy (>90%) from the features
we used, we did not update the features used for the ML
model (a greedy approach). For future work, next steps would
be introducing Feature Engineering to find and build more
efficient models to gain the best accuracy with a manageable
number of features.

Fig. 6. Model Accuracy after applying SMOTE

C. Decision Tree to Flow Rules

The benefit of using a decision tree for classification is that
the decisions made are comprehensible, and easily depicted
using text or graphs. Fig.1 illustrates a simple example with
two features, max_flowiat (maximum flow inter-arrival time)
and min_fiat (minimum forward inter-arrival time). In this
example there are 3 classes, 0, 1, and 2. To go left, the initial
statement in the node must be true or to go right the statement
must be false. For instance the root node of fig.1 will go left
if a presented value is less than or equal to 1437068.5. At
a leaf node there is an array of values representing each of
the classes, with the highest array value being the most likely
classification. Again, in fig.1 in the third row the left most leaf
has a value array of 0, 0, and 3, indicating the most likely class
is class 2.

To convert our decision tree to flow rules that can be used
by the data plane we first divide the tree into left and right

children. An array of leaf nodes is also constructed. These
data structures are used to create an array of all possible
branches within the tree. Each branch is traversed and the
minimum and maximum value for each feature within the
branch is stored in a feature min/max array. When a leaf
node is reached the range between min and max, and the
class decision for each feature is written to a text file as a
flow rule. For instance a flow rule with three features and the
class decision of 2 might look like "table_add decision_table
class_value 0->10 4->24 1->9 => 2". The rules.txt file and
associated code is available in our repository on github.com
[5]. As a way to facilitate collaboration between researchers
during a pandemic, the control plane code, including the flow
rules converter where developed using Jupyter notebooks and
Google colab. The current version presented in our repository
remains in that format.

As discussed in other areas of the paper we currently
consider 6 features from the UNB VPN-nonVPN dataset [2].
These features may not be the best representatives of each class
for our min-max branch approach and future work will be able
to pin point the most efficient selections. The limitations of
the p4 dataplane language must also be considered however.
It is interesting to note that 6 features produces under 600
lengthy flow rules, while only relying on 1 feature produces
over 6500 short rules. This is an important consideration when
generating the rules, not just for the accuracy of our model
but also when considering the memory limitations of SDN
switches and the speed at which they are able to classify using
our system. Another consideration is that the flow rules will
need to be updated and pushed to network switches from the
control plane as the nature of traffic changes over time. This
correlation between number of features, number of rules, and
model accuracy will be considered in future work.

D. Data Plane Design

The main task in data plane design is to pre-process the
packets. The number and type of features of packets are
key factor for classification, they would affect the granularity
of decision tree directly. In this section, we describe steps
in pre-processing and how pre-processing is important for
classification. The only reason we pre-process packets is to
extract the features. These features are necessary for the
project. As shown in Figure 8, the steps in pre-processing
are:
(1) Receiving the traffic
(2) Extract needed features by using register bank
(3) Use a match-action table to pass the features through flow
rules and get the class value from it.
(4) Modify the customized header and attach it to the end of
header field.

Since the basic logic of classification is that each type of
traffic contains different features. We decide to use time-series
statistics as the features for our project. Because time-series
statistics are good when classifying protocols. In consider of
learning curve and time cost, we give up using some powerful
tools like NetMate or CICFlowMeter to extract statistical



Fig. 7. Conceptual design of data plane from server to client

Fig. 8. Steps of pre-processing

features. But still, in the data plane, we generate 3 types of
time-series statistics, 6 features in total. Forward Inter Arrival
Time–FIAT (max and min) is the time between two forwarding
packets. Backward Inter Arrival Time–BIAT (max and min)
is the time between two backwarding packets. Flow Inter
Arrival Time—FlowIAT (max and min) is the time between
two packets regardless of direction. This means that traffic is
bidirectional – incoming and outgoing, so we take the direction
of flow as an important factor in pre-processing. We introduce
a new mechanism to get the direction of packets. We use
match-action table to implement the mechanism, it checks
whether the source address or the destination address matches
the local IP address, then it can invoke the corresponding
actions to calculate the time-series statistics. The reason these
features are important is that the granularity of decision tree
will be better since we have more and more features. As a
result, the better accuracy we can achieve.

IV. EVALUATION

For evaluation purposes we implement our traffic classifier
as a p4 application ( ≈ 341 lines of code) within a BMv2
simple switch. Of key interest is the accuracy of our imple-
mentation. The source code is available at [5]. In this section
we present our evaluation of the classifier prototype.

Evaluation was performed on a HP Z840 with 2 Intel(R)
Xeon(R) CPU E5-2650 v3 @ 2.30GHz, 2301 Mhz, 10 Core(s),
20 Logical Processors. On this hardware Oracle VirtualBox 6.1
was used to run the P4 Tutorial Release 2022-04-12 image.
The operating system used was Ubuntu 20.04.4 LTS.

A. Setup

The VPN-noVPN dataset [2] provides data in two forms.
The statistics provided by the dataset are used by us in creating
the previously mentioned flow rules in Section III.C. We use
the other data form provided in the dataset, pcap files, to
evaluate our prototype. The pcap files are representative of the
classes: chat, file transfer, mail, P2P (peer to peer), streaming,

and VOIP (voice over internet protocol). A seventh class,
browsing, is not explicitly represented and as mentioned in
[2] this class is an amalgam of the other classes. From the
available pcap files we select 2 files from each class, excluding
browsing. Within each class, 1 file is vpn traffic, and 1 file is
non-vpn traffic.

With pcap files selected the files are reviewed in Wireshark
Version 3.6.3 (v3.6.3-0-g6d348e4611e2) and the principle
source and destination are identified. Using tcprewrite 4.4.1
these IPv4 addresses are changed to either 10.0.0.1 or 10.0.0.2
for testing convenience and consistency.

Our p4 dataplane file is compiled and the resulting simple
switch started. The generated flow rules, and basic forwarding
rules are then loaded onto the switch.
$ p4c --target bmv2 --arch v1model dataplane.p4

$ sudo simple_switch -i 0@veth0 -i 1@veth2 2@veth4 /
--log-console --thrift-port 9090 dataplane.json

$ sudo simple_switch_CLI --thrift-port 9090 /
/< ./rules.txt

To send and receive network traffic through the simple
switch, Scapy 2.4.5 is used as seen in fig.9. The send file
[5] cycles through an array of pcap files, sending packets into
the simple switch on port 2 using virtual ethernet interface
4. Packets are received by Scapy receive files [5] listening
on virtual ethernet interfaces 0 and 2. The receive files check
the classification that was added to the packet by the simple
switch and record it in a text file. The text files are used to
compare the classification from the simple switch against the
ground truth of the original pcap.

The accuracy of classification performed by our data-
plane.p4 running on the simple switch is represented in tables
I thru VIII. Each table shows a network traffic type and what
the packets have been classified as.

Future work will involve comparing the accuracy and speed
of our decision tree classifier running on a SDN switch to the
same classifier running at the controller or a separate server.
The implementation on a cpu of the statistical procedures used
in [2] is necessary for this comparison and beyond the scope
of the current research.

B. Results
Mentioned in the data modelling section, but worth noting

again, are the results of our classification model. Using our



TABLE I
PACKET CLASSIFICATION FOR STREAMING (YOUTUBE) WITH 500 PACKETS RUN 10 TIMES.

host 1 host 2
file browse chat ft mail p2p stream voip browse chat ft mail p2p stream voip sent/received

stream_500 1 0 87 190 3 0 0 2 0 217 0 0 0 0 500/500
stream_500 0 0 84 193 4 0 0 1 0 217 0 1 0 0 500/500
stream_500 0 2 89 186 4 0 0 0 0 216 0 3 0 0 500/500
stream_500 0 0 88 191 2 0 0 0 0 218 0 1 0 0 500/500
stream_500 0 0 88 191 2 0 0 0 0 218 0 1 0 0 500/500
stream_500 0 0 164 83 6 0 0 0 0 195 0 7 0 0 500/455
stream_500 0 0 80 199 2 0 0 0 0 218 0 1 0 0 500/500
stream_500 0 2 82 192 5 0 0 1 0 217 0 1 0 0 500/500
stream_500 0 1 215 63 2 0 0 1 0 204 0 8 0 0 500/494
stream_500 0 0 212 67 2 0 0 1 0 213 0 5 0 0 500/500

TABLE II
PACKET CLASSIFICATION FOR STREAMING (YOUTUBE) WITH 1000 PACKETS RUN 10 TIMES.

host 1 host 2
file browse chat ft mail p2p stream voip browse chat ft mail p2p stream voip sent/received

stream_1000 1 7 328 155 3 0 0 2 0 392 0 10 0 0 1000/898
stream_1000 3 0 448 0 1 0 0 3 0 448 0 1 0 0 1000/904
stream_1000 6 34 354 120 2 0 0 1 0 404 0 14 0 0 1000/935
stream_1000 1 54 179 129 3 0 0 0 0 286 0 16 0 0 1000/668
stream_1000 0 0 149 392 7 0 0 0 0 451 0 1 0 0 1000/1000
stream_1000 0 2 306 237 3 0 0 0 0 439 0 13 0 0 1000/1000
stream_1000 0 15 207 167 4 0 0 1 0 322 0 6 0 0 1000/722
stream_1000 0 8 292 111 4 0 0 1 0 332 0 14 0 0 1000/762
stream_1000 0 1 196 349 2 0 0 2 0 447 0 3 0 0 1000/1000
stream_1000 0 2 354 100 7 0 0 2 0 378 0 13 0 0 1000/856

TABLE III
PACKET CLASSIFICATION FOR STREAMING (VIMEO) WITH 500 PACKETS (PAYLOAD REMOVED) RUN 10 TIMES.

host 1 host 2
file browse chat ft mail p2p stream voip browse chat ft mail p2p stream voip sent/received

stream2_500 1 0 203 0 8 0 0 3 0 113 0 8 0 0 500/336
stream2_500 0 0 190 143 2 1 0 1 0 163 0 0 0 0 500/500
stream2_500 0 0 213 122 0 1 0 1 0 163 0 0 0 0 500/500
stream2_500 0 5 139 47 5 1 0 2 0 82 0 7 0 0 500/293
stream2_500 0 0 193 142 0 1 0 1 0 163 0 0 0 0 500/500
stream2_500 0 0 141 187 7 1 0 2 0 162 0 0 0 0 500/500
stream2_500 0 0 205 128 2 1 0 1 0 163 0 0 0 0 500/500
stream2_500 0 0 225 33 4 1 0 2 0 107 0 18 0 0 500/392
stream2_500 0 1 256 72 3 1 0 1 0 145 0 14 0 0 500/493
stream2_500 0 0 201 131 3 1 0 1 0 163 0 0 0 0 500/500

original 4 features, we achieved over 75% accuracy, and with
six features, we achieved over 90% accuracy. This speaks to
a correlation between feature amount and accuracy, though
we did not investigate this further since the value was high
enough for our research. Provided that feature count effects
accuracy, there is presumably a threshold where increasing
features numbers is detrimental to accuracy and this is left to
future work.

We also saw a successful result in translating the classifica-
tion model to flow rules. A small inspection of the flow rules
and a trace of several values resulted in correct classifications.
This, however, is not a validation of the process and a more
thorough validation needs to be carried out to determine if it
is indeed accurate.

When testing began, it was found that the dataplane p4 file
behaved differently when receiving single packets versus being
fed a stream from a pcap file read by Scapy. Reasons for

this were not readily identifiable, and the classification was
also directed to the TCP:reserved header location to facilitate
testing. Future work needs to identify the cause of this issue.

The first test of the complete system was done on a
streaming data pcap, specifically YouTube, from the VPN-
NonVPN dataset. We successfully altered client and server
addresses to meet the requirements of our test bed. When the
TCP packets with addresses 10.0.0.1 and 10.0.0.2 were run
through the system, packets were assigned a classification by
our system, but on closer inspection, it was found that there
were multiple packet dropouts and the classifications were
incorrect. To test whether packet dropout was related to system
resources, we created a streaming data file with only 500
packets, and a file with 1000 packets using Wireshark. Each of
these files was run through the test bed with the results as seen
in Table I and Table II. The pcap with 500 packets had less
dropout than the pcap with 1000 so it was decided that future



tests would only use 500 packets. The classifications remained
incorrect in both files, with host 1 classifications clustering
around file transfer (ft) and mail, with some outliers. Host 2,
representing the server, mostly classified received packets as
mail.

To test whether the incorrect classifications were isolated to
the YouTube streaming file we ran a Vimeo capture through
the system, and again the host 1 classification result clustered
around ft and mail, with some noise in p2p. The host 2
classification was primarily ft, with some noise in p2p and
several consistent packets classified as browsing. The number
of packets sent versus the number received was fairly consis-
tent, with only a few large dropouts. We ran this test again
with the payload removed to see the effect. There was nominal
change, as shown in Table III, which is to be expected since
we are testing time related features.

The results of testing email, chat, ft, VOIP, and streaming
were all similar, and similar to the original test discussed
above. Classifications were incorrect. Host 1 classifications
were clustered around ft and mail with a few outliers in p2p.
Host 2 classifications were principally ft, with some outliers in
p2p. These results can be seen in Tables III thru VIII. The sent
to received ratio of packets was good, with a few exceptions
where packet transmission dropped below 100. All classes
were tested with 500 packets except for VOIP because of
limited files of this type in the original dataset. Scapy returned
errors that packets were too long in several of the classes when
this set of tests was run so payloads were removed on all pcaps
using pcap_remove_payload [6]

Table VI displays the results of the classification of file
transfer (ft) packets. This run of tests is of interest because it is
cleaner than all others, with classifications falling consistently
into a single category, and the ratio of sent to receive packets
being perfect. This type of traffic will be the best to use when
trying to identify problems with our system in future work.

All the above tests were performed with non-VPN traffic.
With VPN traffic, trying to rename sources and destinations
using Wireshark was not possible. Tests were performed by
manually changing the forwarding rules in our test bed. The
limitation of classifications not being visible when pcap files
were used, and the lack of a TCP:reserved area in VPN files
meant no classification data was visible in transferred files.
We have no results for VPN traffic.

The results from all our tests were positive in the sense that
we received classifications. Results, however, were of little
use since the classifications were consistently wrong. Packet
dropout is a concern, as is classification clustering around only
two classes.

V. DISCUSSION

This section looks at the limitations of the research
method used, specifically conclusion validity, internal validity,
construct validity, and external validity. At the end we discuss
future work.

Fig. 9. Evaluation setup where pcap’s are replayed through Scapy

A. Conclusion Validity

This research does not present a conclusion. It is not clear
from the tests that network traffic can be classified using SDN
switches. Some limited classification occurs in our tests but
is incorrect and unclear if the reason for classification results
from our data plane. No comparison system exists as a control
against which to judge our results. Our decision tree run on
a cpu is correct and validated by known tests. The number of
runs of each data type within our test bed is arbitrarily chosen
and the effect of more or less runs is unclear. The seemingly
random dropout of packets is of concern.

B. Internal Validity

Where possible, uncontrolled external factors have been
limited. Tests were run on a virtual machine with external
network connections disabled and unnecessary services and
programs ended. Still, the random dropout of packets demands
a review of the test bed used. The amount of unvalidated
outside code needed to prepare and launch the packets into the
test bed is of concern. A BMv2 switch was used with default
settings, which may not be the optimum for an unbiased
result. Inexperience with the BMv2 switch may also result in
incorrect usage. Data used for this research may contain bias,
and may not be appropriate for the type of research being done.
Statistics provided with the dataset were taken as is and not
validated by us. Finally, because of pandemic restrictions, the
researchers worked separately, with different sections of code
being developed and then combined online and discussed in
an online forum. Unforeseen problems may arise where code
from different researchers crosses over and could be mitigated
by more review and optimization of the code base.

C. Construct Validity

Using a decision tree for traffic classification is not new, nor
is classification (of images) on SDN switches. The construct of



TABLE IV
PACKET CLASSIFICATION FOR EMAIL WITH 500 PACKETS (PAYLOAD REMOVED) RUN 5 TIMES.

host 1 host 2
file browse chat ft mail p2p stream voip browse chat ft mail p2p stream voip sent/received

email_500 0 0 77 188 6 0 0 2 0 226 0 1 0 0 500/500
email_500 0 0 12 20 5 0 0 0 0 34 0 2 0 0 500/73
email_500 0 0 70 195 6 0 0 2 0 226 0 1 0 0 500/500
email_500 0 0 91 179 1 0 0 0 0 228 0 1 0 0 500/500
email_500 0 0 94 171 6 0 0 0 0 228 0 1 0 0 500/500

TABLE V
PACKET CLASSIFICATION FOR CHAT WITH 500 PACKETS (PAYLOAD REMOVED) RUN 5 TIMES.

host 1 host 2
file browse chat ft mail p2p stream voip browse chat ft mail p2p stream voip sent/received

chat_500 0 17 72 72 0 3 0 0 0 0 175 0 3 0 500/342
chat_500 0 0 72 171 4 0 0 1 0 251 0 1 0 0 500/500
chat_500 0 0 22 26 6 0 0 0 0 37 0 4 0 0 500/95
chat_500 0 0 56 190 1 0 0 0 0 252 0 1 0 0 500/444
chat_500 0 0 64 176 7 0 0 1 0 251 0 1 0 0 500/500

TABLE VI
PACKET CLASSIFICATION FOR FILE TRANSFER WITH 500 PACKETS (PAYLOAD REMOVED) RUN 5 TIMES.

host 1 host 2
file browse chat ft mail p2p stream voip browse chat ft mail p2p stream voip sent/received

ft_500 0 0 0 162 5 0 0 0 0 332 0 1 0 0 500/500
ft_500 0 0 0 165 2 0 0 1 0 331 0 1 0 0 500/500
ft_500 0 0 0 165 2 0 0 0 0 332 0 1 0 0 500/500
ft_500 0 0 0 164 3 0 0 1 0 331 0 1 0 0 500/500
ft_500 0 0 0 163 4 0 0 0 0 332 0 1 0 0 500/500

TABLE VII
PACKET CLASSIFICATION FOR VOIP WITH 340 PACKETS (PAYLOAD REMOVED) RUN 5 TIMES.

host 1 host 2
file browse chat ft mail p2p stream voip browse chat ft mail p2p stream voip sent/received

VOIP_500 1 1 42 64 1 0 0 1 0 128 0 0 0 0 340/238
VOIP_500 0 0 99 10 4 0 0 1 0 121 0 5 0 0 340/240
VOIP_500 0 0 54 100 4 0 0 1 0 180 0 1 0 0 340/340
VOIP_500 0 0 47 107 4 0 0 0 0 181 0 1 0 0 340/340
VOIP_500 0 0 54 102 2 0 0 0 0 181 0 1 0 0 340/340

TABLE VIII
PACKET CLASSIFICATION FOR STREAMING WITH 500 PACKETS (PAYLOAD REMOVED) RUN 5 TIMES.

host 1 host 2
file browse chat ft mail p2p stream voip browse chat ft mail p2p stream voip sent/received

Stream_500 0 17 19 95 2 0 0 0 0 265 0 6 0 0 500/404
Stream_500 0 0 0 164 3 0 0 0 0 332 0 1 0 0 500/500
Stream_500 0 20 5 23 5 0 0 0 0 104 0 7 0 0 500/164
Stream_500 0 1 46 104 4 0 0 1 0 305 0 3 0 0 500/464
Stream_500 0 4 77 36 6 0 0 1 0 236 0 5 0 0 500/365



representing the tree as flow rules by finding the minimum and
maximum of each feature through traversal of tree branches is
not fully validated, however. Further review of the correctness
of this approach is needed. Also in question is classifying by
time-based features, principally what features and how many
are needed requires further research.

D. External Validity

The results are not generalizable outside the experimental
setting. The BMv2, while good for initial testing, is not
representative of real-world conditions. Data from the VPN,
non-VPN dataset is good for testing but proved to be limited,
and contains data for platforms, such as Vimeo, that are
no longer representative of those platforms. Using only one
switch, while convenient for testing, does not present the traffic
collision and dropout problems that a live network would.

E. Future Work

To improve the accuracy of classification in the data plane,
an increase in the diversity and number of features is nec-
essary, for instance, idle time and active time. Also, some
features could be measured within a given time, for example,
bytes per second or packets per second. Instead of hard coding
these features in P4, powerful tools like NetMate could be used
to extract these features.

Of the four steps presented in this research, three need
further validation. The existing dataset statistics and pcaps,
conversion of decision tree to flow rules, and collection of
time related statistics using a SDN switch are possible areas for
introducing error. By proving the correctness of each of these,
the research result will have more power. Random dropouts
of packets during testing show that a review is necessary for
the test bed as well.

This research has developed the data plane and an appli-
cation that functions in the control plane. Developing how
the application works with a controller, such as Ryu, is still
necessary. Also needed is the design of how flow rules will be
kept up to date by the controller, especially given the dynamic
nature of network traffic.

VI. RELATED WORK

We did an ad hoc scoping review of recent work and found
two themes relevant to our research: new approaches to traffic
classification, and mapping ML to SDN. Research involving
traffic classification is more mature than the mapping of ML
to SDN, but we found interesting work in both themes that
could be directly applied to our research.

The four papers we reviewed under the traffic classifica-
tion theme took a research engineering approach with all
performing a quantitative simulation [7][2][8][9]. Different
motivations for traffic classification were identified. Traffic
classification as essential to network management tasks like
monitoring is found to be a motivator in Akbari et al.[7] and
Gao et al.[8]. The motivator for traffic classification in Draper-
Gil et al.[2] and Muehlstein et al.[9] is related specifically to
security concerns. A key research problem in Akbari et al.[7]

is the dynamic nature of web protocols and the increase in
encryption shown by such protocols as HTTP/2 and QUIC.
Proposed is a generic data-driven method that is protocol
agnostic. Research in Gao et al.[8] cites the slow process of
controllers getting statistics from the data plane as being un-
acceptable for tasks needing high reactivity when identifying
traffic anomalies. To solve this, the researchers propose a data
plane primitive that can efficiently track mean, variance, and
standard deviation of traffic flow for use when identifying
traffic based on its temporal characteristics. Muehlstein et
al.[9] focuses on the security problem posed by a passive
adversary eavesdropping on network traffic. Also concerned
with security, [10] extend past work to show that applications
supporting multiple services have added vulnerability to task
classification.

Principally tackling the problem of increasing encryption,
Akbari et al.[7] vectorizes flow statistics, shapes traffic based
on size, timing, and direction, and the raw bytes from the
TLS handshake packets of a real-world mobile traffic dataset
from an ISP. They develop a hybrid neural network (con-
volutional neural network and a long short-term memory
network) that uses extracted features to distinguish between
the traffic classes of chat, download, games, and mail. They
list the benefits of this approach as its small size compared
to other ML approaches and its temporal nature. To facilitate
in-switch statistical analysis, Gao et al.[8] create algorithms
suitable for the computational abilities of SDN switches that
can calculate mean, variance, and standard deviation. They
then use these statistics to identify anomalies in the network
traffic, specifically when one subnet is receiving more traffic
than another. It is unclear which dataset this research used, but
the algorithms have been combined into a publicly available
library, which may be useful for our research. Support Vector
Machine (SVM) is used in Muehlstein et al.[9] to classify
traffic features identified from a dataset developed by the
researchers. Of interest is the feature extraction process and the
feature list developed for this research. Similar to Muehlstein
et al.[9], Draper-Gil et al.[2] create a dataset, but with focuses
on specific features of forward flows, backward flows, bi-
directional flows, the idle-to-active and active-to-idle states,
and number of packets per second. Two ML algorithms were
used to gauge the success of the features for classifying,
decision tree and k-nearest neighbors.

For the mapping of ML to SDN theme, we looked at
two papers, Siddique et al.[11] and Xiong et al.[10]. Both
papers tackle the ML to match-action pipeline problem, one
presenting a general solution and one creating a specific
computer vision (CV) related one. In Xiong et al.[10], four
different machine learning algorithms, Decision Tree, SVM,
Naive Bayes, and K-means, are evaluated on the v1model
architecture using a BMv2 switch, Mininet, and a standard
dataset. Siddique et al.[11] designed a complete image clas-
sification system using three components: ML classifier on a
python based network controller, a P4 data plane using the
v1model architecture on a BMv2 switch, and a client library
that can encapsulate images into a readable packet format.



While the client library does not interest our research, the
other two components contain potential starting points for our
research when combined with the statistical analysis work
of the other research mentioned. Of interest in the work of
Siddique et al.[11] and Gao et al.[8] are the methods that
overcome the lack of floating point operations available on
software switches.

VII. CONCLUSION

This research presents a system of three designs that cul-
minate in a classifier for encrypted network traffic using the
SDN data plane. Our machine learning model design uses the
ensemble supervised learning of a decision tree classifier. We
refine a highly imbalanced dataset that was over-fitting using
the SMOTE library, creating a well-balanced class distribution
training set. By using four time related traffic flow statistics,
our model achieves 76.77% accuracy and with six time related
features, we achieve 94.5% accuracy. Our decision-tree-to-
flow-rule design translates the decision tree model into flow
rules useable on the SDN data plane. Our data plane design
classifies live network traffic into one of seven categories based
on time related features and lays the groundwork for finer
grained classification.

Evaluation of our system reveals that errors exist in either
or both our decision-tree-to-flow-rule design and data plane
statistics generation. The overall system, however, successfully
adds a classification to out-going packets, though the classi-
fication is incorrect, demonstrating the possibility of such a
system.

As encryption and changing protocols make network traffic
harder to classify, network administrators and other legitimate
users who rely on classification to shape traffic will need
tools such as our system. We have laid the groundwork for
a complete system on the SDN data plane, as well as a test
bed for refining that system, that with future research will
perform an accurate classification of live encrypted network
traffic without the use of specialized hardware.
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